If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2-19=-7
We move all terms to the left:
2k^2-19-(-7)=0
We add all the numbers together, and all the variables
2k^2-12=0
a = 2; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·2·(-12)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*2}=\frac{0-4\sqrt{6}}{4} =-\frac{4\sqrt{6}}{4} =-\sqrt{6} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*2}=\frac{0+4\sqrt{6}}{4} =\frac{4\sqrt{6}}{4} =\sqrt{6} $
| 2x(4x+8)=24 | | 3x+x+15+59=180 | | 4x^2+3x=15 | | 5^x-3=^2x | | 10x+8-3x=22 | | 2p+6+p+19+70=180 | | -15x+16x+-13=-18 | | 4(x+16)=-4 | | 3x^2-2=x(x-2) | | 12x-11x=11 | | 109=x-74 | | 3y+2y+4+2y-17=180 | | 109=x+75 | | 2x+34=3x²+21 | | 7x+-13x=18 | | 7x+–13x=18 | | 8x-6x+2=18 | | c-9+c+c+3=180 | | 12x-6+10x+5=131 | | 3x(4x)=48 | | 2(-2x+9)=6 | | 15x+-11x+-5=19 | | Xx4=84 | | -10g-(-50)+4=-2+4g | | 36^(x-3)=216^x | | 72+2a+2a-47=180 | | -2(x-10)=6 | | 12+15x=27 | | -10g-(-46)=-2+4g | | 2m+11=m+4 | | (6-p)2.4=(2p+3)3.8 | | -9x+2x=14 |